为了在广东高考数学中取得好成绩,考生需掌握有效的应试技巧,从基础知识到解题策略,全面提升数学应试能力。
资料领取:《高中数学127个快速解题公式》
一、历年高考数学试卷的启发
1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;
2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;
3.注意题目中的小括号括起来的部分,那往往是解题的关键;
二、答题策略选择
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,但写了就可能得分。
三、答题思想方法
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
例题:方程sinx=lgx的根的个数为:( )
A 1个 B 2个 C 3个 D 4个
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……
4.选择与填空中出现不等式的题目,优选特殊值法。
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;回忆椭圆离心率公式:回忆双曲线离心率公式;。
10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。
12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题。
13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略。
15.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。
16.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移用坐标系转化为口诀平移就可以了。
17.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
📌欢迎广东各年级考生和家长加入【广东高考交流群】!为大家分享广东高考政策解读、高中选科、强基综评、中外合办、志愿填报、各类试题等重要信息!
广东高考交流群
↑识别二维码进群↑
如果加群失败,可添加广东高考小粤老师(微信号:13311265409)好友,备注:省市-高考年份-选科,老师会统一邀请大家进群。